The Calculation
sorry for the long math
lol. But i done it!
Pavilion Build:
Getting my 16 triangles
360* / 16 = 22,5*
Cutted Total Width = 1.0"
1 / 2 = 0.5 (half)
Calculating first triangle: I know the degrees and the lengt of 2 sides of the triangle .500" i need to
calculate the 3th side.
A Side Length = 0.5
B Side Length = 0.5
C side Length = ?
A Angle = 22.5
2x 0.5 square root = 0.25
0.25 + 025 - 2 * 0.5 * 0.5 * cos(22.5) = 0,03806023374435662193590840530161 square root = 0,19509032201612826784828486847703
C Side Length: 0,19509032201612826784828486847703 (REMEMBER!!)
We now can calculating the angle of the sides B & C
We have:
A Side: 0.5
B Side: 0.5
C Side: 0,19509032201612826784828486847703
(sqr(0,19509032201612826784828486847703) + sqr(0.5) - sqr(0.5)) / (2 * 0,19509032201612826784828486847703 * 0.5) = 0,19509032201612826784828486847703
cos-1(0,19509032201612826784828486847703) = 78,75*
Now i can calculate the height of the triangle:
0,5 * sin(78,75) = 0,49039264020161522456309111806712
Remember: 0,49039264020161522456309111806712
Now we need to calculate the height with the 41 angle this is what we got:
A side: 0.5
A angle: 41*
A angle: 90*
90* - 41* = 49*
0.5 / tan(49) = 0,43464336890811333110004781935197
With the awnser of that we create a new triangle with the remembered calculation we need to get the length
of the triangle this is what we got:
A side: 0,49039264020161522456309111806712 (remembered)
B Side: 0,43464336890811333110004781935197 (Heigth of pavilion with the 42.1 degrees)
A Angle: 90*
sqr(0,49039264020161522456309111806712) + sqr(0,43464336890811333110004781935197) = 0,42939979969970514285074057912462
0,42939979969970514285074057912462 square root = 0,65528604418200845951299818907049 (REMEMBER SECOND TRIANGLE)
if we devide the awnser we have a midpoint from a rectangle and between 2 triangles. And we can now calculate
the first angle of the cut a way piece.
0,65528604418200845951299818907049 / 2 = 0,32764302209100422975649909453525
we remembered the 0,195 from the beginning we now devide that one to in 2.
0,19509032201612826784828486847703 / 2 = 0,09754516100806413392414243423852 REMEMBER!!
A Side = 0,32764302209100422975649909453525
B side = 0,09754516100806413392414243423852
A Angle = 90*
We need to calculate the angle of the triangle
0,32764302209100422975649909453525 / 0,09754516100806413392414243423852 = 3,3588854506469852220206832501572
tan-1(3,3588854506469852220206832501572) = 73,420794479222064121318415104858* degrees
Our cutting Angle is: 73,420794479222064121318415104858* Degrees
Almost there
We now need to calculate the angle of the square (double triangle) where we divide the awnser from
we now need the full length to get the angle.
We use the same diveded line width from the last triangle calculation
We have:
A Side: 0,65528604418200845951299818907049
B Side: 0,09754516100806413392414243423852 Remembered!!
A Angle: 90
0,65528604418200845951299818907049 / 0,09754516100806413392414243423852 = 6,7177709012939704440413665003143
tan-1(6,7177709012939704440413665003143) = 81,533186488604028574831045002464
We can now calculate our meetpont with those two triangles!!! I now need to calculate one side length to
get the tip of the triangle that indicates our MEETPOINT!
We got the following:
Side A: 0,19509032201612826784828486847703 Remembered from the beginning!
Angle A: 73,420794479222064121318415104858
Angle B: 81,533186488604028574831045002464
Get the 3th angle
180 - 73,420794479222064121318415104858 - 81,533186488604028574831045002464 = 25,046019032173907303850539892678
Now i can calculate te length of Side B to calculate the heigth of the triangle:
sin(73,420794479222064121318415104858) * 0,19509032201612826784828486847703 / sin(25,046019032173907303850539892678) = 0,44167099778293711698181581067354
Height of the angle:
0,44167099778293711698181581067354 * sin(81,533186488604028574831045002464) = 0,43685736278800563967533212604698
Pfiew!
Took a complete day to get that point.
Exact Meetpoint: 0,43685736278800563967533212604698
Measured from the girdle the beginning of the pavilion! And on the angle from the 42.1* cut. The meetpoint is at the outher side of the cut.
Dont use the picture for calculating! I used it only as a guide
Greets
Christian